skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de_Oliveira_Barreto, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A limitation in fine-tuned tree-ring radiocarbon (14C) data is normally associated with overall data uncertainty. Tree-ring14C data variance as a result of sample heterogeneity can be reduced by adopting best practices at the time of sample collection and subsequent preparation and analysis. Variance-reduction of14C data was achieved by meticulous sample handling during increment core or cross-sectional cuttings, in-laboratory wood reductions, and cellulose fiber homogenization of whole rings. To demonstrate the performance of those procedures to final14C results, we took advantage of the replicated data from assigned calendar years of two Pantropical post-1950 AD tree-ring14C reconstructions. TwoCedrela fissilisVell. trees spaced 22.5 km apart, and two trees of this species together with onePeltogyne paniculataBenth tree spaced 0.2 to 5 km apart were sampled in a tropical dry and moist forest, respectively. Replicate14C data were then obtained from grouped tree-ring samples from each site. A total of 88% of the replicated14C results fell into a remarkably consistent precision/accuracy range of 0.3% or less, even though multiple tree species were used as pairs/sets. This finding illustrates how adopting a few simple strategies, in tandem with already established chemical extraction procedures and high-precision14C analysis, can improve14C data results of tropical trees. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  2. To ensure unbiased tree-ring radiocarbon (14C) results, traditional pretreatments carefully isolate wood cellulose from extractives using organic solvents, among other chemicals. The addition of solvents is laborious, time ­consuming, and can increase the risk of carbon contamination. Tropical woods show a high diversity in wood­ anatomical and extractive composition, but the necessity of organic-solvent extraction for the 14C dating of these diverse woods remains untested. We applied a chemical treatment that excludes the solvent step on the wood of 8 tropical tree species sampled in South-America and Africa, with different wood-anatomical and extractive properties. We analyzed the success of the extractive removal along with several steps of the a-cel­lulose extraction procedure using Fourier Transform Infrared (FTIR) spectroscopy and further confirmed the quality of 14C measurements after extraction. The ex-cellulose extracts obtained here showed FTIR-spectra free of signals from various extractives and the 14C results on these samples showed reliable results. The chemical method evaluated reduces the technical complexity required to prepare a-cellulose samples for 14C dating, and therefore can bolster global atmospheric 14C applications, especially in the tropics. 
    more » « less